# Documentation of non-timber forest products in Lengteng Wildlife Sanctuary of Mizoram (India)

### Grace Lalawmpuii Sailo and H. Lalramnghinglova<sup>1</sup>

Department of Environmental Science, Mizoram University, Tanhril, Aizawl <sup>1</sup>Corresponding Author; e-mail: lalramnghinglova54@gmail.com

[Received 24.10.2017; Revised 20.11.2017; Accepted 13.12.2017; Published 31.12.2017]

#### Abstract

Forests produce more than timber, wildlife and water. They are vast storehouses for non-timber forest products; the diversity of which complicates development of appropriate management policies and practices. These products have enormous social, economic and ecological values to the residents, communities and forests. Yet, they are neither adequately recognized as natural resources, nor managed as such. Present study was conducted during March 2013 – 2015 at Lengteng Wildlife Sanctuary and highlights 18 timber species, 17 species of fuel-woods, 38 edible plants, 57 wild fruits and 10 commonly used medicinal plants.

Key words: Lengteng Wildlife Sanctuary, timber, fuelwood, fruits, fodder, edible plants.

#### **INTRODUCTION**

The contribution of Non-Timber Forest Products to improve livelihoods can best be assured through a process of gradual domestication of NTFP-plants in human-modified (agro) forest types. The way NTFPs contribute to peoples' livelihoods can best be understood by taking livelihoods rather than NTFPs as the central focus of study. Various terms (e.g., non-traditional, secondary, minor, non - wood, and special or specialty) have been used to describe products that come from the forests that are not timber based. Recent legislation uses the term "Forest Botanical Products" to describe these products. But, a more common and widespread term is "non-timber forest products." NTFPs are biological materials harvested from within and on the edges of natural, manipulated or disturbed forests. It includes fungi, mosses, lichens, herbs, vines, shrubs, or trees. Plant parts harvested include the roots, tubers, leaves, bark, twigs and branches, fruits, sap and resins, as well as the wood (Chamberlain et al. 1998). Non-Timber Forest Products also include a part from/ inter alia plant origin, mineral origin (seed, mica etc.) hosts like honey, lac; services like agroforestry. Non-Timber Forest Products are the basic cash and commodities in many cultures (Lalremruata et al. 2007). Recognition of intellectual property rights is important for many NTFPs. While preservation of NTFPs is fundamental to maintenance and continuation of many traditional ways of life, sources of these are increasingly threatened by deforestation and land development activities (Rocky *et al.* 2004).

These products are currently classified into four major product categories: culinary, wood - based, floral and decorative, and medicinal and dietary supplements. Traditional herbal therapy is an age old practice (Rawat & Chaudhury 1998) and such medicinal plants are also treated as NTFPs.

Since the early 1990s the role of NTFPs for sustainable forest use and poverty alleviation has received increased attention. Starting with the (in)famous article by Peters et al. (1989) which has since been widely criticized (Sheil & Wunder 2002) – the original idea on the potentials of NTFP exploitation as a way to sustainable forest management was primarily based on the assumption that the commercial extraction of these from natural forests could simultaneously serve the goals of biodiversity conservation and poverty alleviation (De Beer & McDermott 1996; Nepstad & Schwartzman 1992; Ros-Tonen & Wiersum 2003; Ruíz Pérez & Byron 1999). Proponents of the 'NTFP-strategy' pointed to important benefits of NTFP exploitation for local communities, such as goods (food, fodder, fuel, medicine, construction material and small wood for tools and handicrafts), income and employment. Compared to timber, the harvesting of NTFPs seemed to be possible without major damage to the forest and its environmental services and biological diversity. In sum, NTFPs were expected to offer a model of forest use which could serve as an economically competitive and sustainable alternative to logging. Traditional medicine is the main stay of primary health care in virtually all poor and developing countries. The use of herbal medicines in developed countries is also expanding rapidly, with many people turning towards alternative treatments that they hope will be less harmful and have fewer side effects than western synthetic chemical medicines. Present study concentrated on the usefulness of plant species among local people living in the vicinity of Lengteng Wildlife Sanctuary.

### **MATERIALS AND METHODS**

#### Study area

**Lengteng Wildlife Sanctuary (LWLS):** The area of Lengteng sanctuary is 58.26 sq km. The word Lengteng is derived from Paite. 'Leng' means, Cicada (Rengchal/Thereng) and 'Teng' means 'to dwell, to live or to exist' and so, the word 'Lengteng' may be defined as 'The place where cicada (Thereng) dwell or exsist'. In olden days in this particular plain area there used to live Rhinoceros and so it was called Samakzawl (Samak = Rhinoceros, zawl = plain). There is another place called Nauzuarzotlang at the highest point of Lengteng Wildlife Sanctuary peak, this peak is 2141 m high. In western part of Lengteng Wildlife Sanctuary, there is one wide cave called 'Vamurpuk' (Swallow cave) since swallow birds can be sighted every time inside this cave.

**Location**: Located in the eastern of Mizoram in Champhai district, 198 km from Aizawl via Ngopa village (12 km from Ngopa village). It lies between 23°42' N Latitude and 93°10' E longitude (Figure 1).

**Surrounding villages:** The area is surrounded by seven villages *viz.*, Ngopa. Kawlbem, Lamzawl, Selam, Lungphunlian, Pamchung and Tualcheng.

The population structure of these villages has been presented in Table 1.

## Study Method and data collection

The method used for firsthand information was Participatory Rural Appraisal (PRA) technique. PRA is a methodology for interacting with villagers, understanding them and learning from them. It involves a set of principles, a process of communication and a menu of methods for seeking villagers' participation in putting forward their points of view about issue and enabling them to do their own analysis with the view to make use of such learning (Mukherjee 2003). Taxonomical survey of plants in Mizoram has certain feedback mechanism as evidenced by such collections conducted by different researchers (Gage 1899; Parry 1932; Fischer 1938; Sawmliana 2003; Lalramnghinglova 2003)



Figure 1. Location map of surrounding villages of Lengteng Wildlife sanctuary

| Name of village | Total no. of | Population |        | 1     |
|-----------------|--------------|------------|--------|-------|
|                 | Houses       | Male       | Female | Total |
| Ngopa           | 945          | 2,168      | 1,987  | 4,155 |
| Kawlbem         | 268          | 735        | 744    | 1,479 |
| Selam           | 209          | 524        | 493    | 1,017 |
| Tualcheng       | 157          | 364        | 386    | 770   |
| Lungphunlian    | 81           | 204        | 180    | 384   |
| Lamzawl         | 72           | 183        | 167    | 350   |
| Pamchung        | 63           | 151        | 152    | 303   |

Table 1. Number of households and population structure in seven villages surrounding LWLS.

Information for use of timber, fuel-wood, charcoal, food, fruit, and medicinal herbs were recorded through personal interview based on pre-structured questionnaire from women, men and children from the surrounding villages using PRA technique. During 2014 - 2015, the president and members of the Village Council, leaders of the Young Mizo Association, and several local people of the adjacent villages of the study area were interviewed to know about the socio-economic conditions of their respective villagers. Different houses covering 70 % households were visited to obtain their lifestyle preferences, their dependencies on NTFPs including animal food and were recorded in the field note book.

The study was conducted during March 2013 to April 2015 during which all the seven surrounding villages viz. Ngopa, Kawlbem, Selam, Lamzawl, Pamchung, Tualcheng and Lungphhunlian were surveyed. For collecting information, simple random sampling was

adopted. Firstly, complete lists of households were prepared, and selection of households was done randomly. Data was collected through a well framed questionnaire. Cross checking of collected information was done by interviewing members of village council, leaders of Y.M.A., teachers at primary and secondary schools and employee of forest department.

## **RESULTS AND DISCUSSION**

From the present study it was observed that collection of firewood is a daily chore as most of the village population depends on the forest for running their fire-places. Villagers, even today, are largely dependent on fuel wood. The LWLS has suffered horribly from illegal collection of timber and the incidence is happening at very high rate. Illegal logging has been most commonly carried out in small groups of local villagers, using machineries introduced from Myanmar which can saw more timbers in a short period. Community members also fell trees for their domestic uses. However, majority of the timbers collected were for selling purposes. Logging causes serious and fast forest degradation. Timber logging includes harvesting, transporting, processing, buying or selling of timber in violation of forest conservation laws. This is mainly due to a conflict between the authorities and Selam villagers. Actions taken by the government since 2014 substantially reduced those illegal activities. And, less illegal activities were observed in 2015. However, continuous enforcement of better restriction rules to stop timber collection from the sanctuary is recommended.

The following tables (Tables (2-7)) show uses of timbers, fuel-wood, fodder, charcoal, fruits, edible and commonly used medicinal plants in and around the sanctuary:

| SI<br>No. | Botanical Name                                    | Family         | Local Name     | Habit      | Status   |
|-----------|---------------------------------------------------|----------------|----------------|------------|----------|
| 1.        | Albizia chinensis (Osb.) Merr.                    | Fabaceae       | Vang           | Tree       | Common   |
| 2.        | Betula alnoides BuchHam ex D.Don                  | Betulaceae     | Hriang         | Tree       | Common   |
| 3.        | Castanopsis tribuloides (Sm). A.DC.               | Fagaceae       | Thingsia       | Tree       | Common   |
| 4.        | Derris robusta (DC.) Benth.                       | Fabaceae       | Thingkha       | Tree       | Frequent |
| 5.        | Glochidion lanceolarium Muell. Arg.               | Phyllanthaceae | Thingpawnchhia | Tree       | Frequent |
| 6.        | Helicia erratica (Roxb.) Blume                    | Proteaceae     | Sialhma        | Large tree | Common   |
| 7.        | Leucomeris decora Kurz                            | Asteraceae     | Tlangham       | Shrub      | Common   |
| 8.        | <i>Litocarpus pachyphyllus</i> (Kurz)<br>Rehder   | Fagaceae       | Thil           | Tree       | Common   |
| 9.        | <i>Macaranga denticulata</i> (Blume)<br>Müll.Arg. | Euphorbiaceae  | Hnahkhar       | Small tree | Common   |
| 10.       | Phyllanthus emblica L.                            | Phyllanthaceae | Sunhlu         | Small Tree | Frequent |
| 11.       | Quercus helferiana A.DC.                          | Fagaceae       | Hlai           | Tree       | Frequent |
| 12.       | Quercus serrata Murray                            | Fagaceae       | Sasua          | Large tree | Common   |
| 13.       | Quercus spicata Sm.                               | Fagaceae       | Fah            | Tree       | Common   |
| 14.       | Quercus xylocarpus (Kurz.) Markgr.                | Fagaceae       | Then           | Tree       | Ommon    |
| 15.       | Schima wallichi Choisy                            | Theaceae       | Khiang         | Tree       | Common   |
| 16.       | Vaccinium donianum Miq.                           | Vacciniaceae   | Sirkam         | Small tree | Frequent |
| 17.       | Wendlandia grandis (Hook.f.) Cowan                | Rubiaceae      | Batling        | Small tree | Common   |

| Table 2. Common fuel-w | ood plants | recognized in | LWLS. |
|------------------------|------------|---------------|-------|
|------------------------|------------|---------------|-------|

# 424 NTFPs in Lengteng Wildlife Sanctuary

| Sl.<br>No. | Botanical Name                                              | Family     | Local Name   | Habit         | Status   |
|------------|-------------------------------------------------------------|------------|--------------|---------------|----------|
| 1.         | <i>Ficus prostrata</i> (Wall. ex Miq.) Buch<br>Ham. ex Miq. | Moraceae   | Theitit      | Small<br>Tree | Unknown  |
| 2.         | Ficus semicordataBuchHam. ex Sm.                            | Moraceae   | Theipui      | Tree          | Frequent |
| 3.         | Morus alba L.                                               | Moraceae   | Thingtheihmu | Tree          | Unknown  |
| 4.         | Trema orientalis (L.) Blume                                 | Ulmaceae   | Belphuar     | Tree          | Common   |
| 5.         | Vernonia volkamerifolia DC.                                 | Asteraceae | Khupal       | Shrub         | Common   |

# Table 3. Commonly foraged fodder trees of LWLS

# Table 4. Trees commonly harvested for making charcoal from LWLS

| Sl.<br>No. | Botanical Name                      | Family         | Local Name         | Habit | Status             |
|------------|-------------------------------------|----------------|--------------------|-------|--------------------|
| 1.         | Castanopsis tribuloides (Sm). A.DC. | Fagaceae       | Thingsia           | Tree  | Common             |
| 2.         | Glochidion lanceolarium Muell. Arg. | Phyllanthaceae | Thingpawnc<br>hhia | Tree  | Frequent           |
| 3.         | Helicia excels (Roxb.) Blume        | Proteaceae     | Sialhma            | Tree  | Frequent           |
|            | Lithocarpus pachyphyllus (Kurz)     | _              |                    | Tree  | Common             |
| 4.         | Rehder                              | Fagaceae       | Thil               |       |                    |
|            | Macaranga denticulate (Blume)       |                |                    | Small | Frequent           |
| 5.         | Müll.Arg.                           | Euphorbiaceae  | Hnahkhar           | Tree  |                    |
|            |                                     |                |                    | Tree  | Common,            |
| 6.         | Quercus helferiana A.DC.            | Fagaceae       | Hlai               |       | excellent charcoal |
|            |                                     |                |                    | Tree  | Common,            |
| 7.         | Quercus spicata Sm.                 | Fagaceae       | Fah                |       | excellent charcoal |
|            |                                     |                |                    | Tree  | Common,            |
| 8.         | Quercus xylocarpus (Kurz.) Markgr.  | Fagaceae       | Then               |       | excellent charcoal |

## Table 5. Plants of LWLS those are harvested for wild edible fruits

| Sl. | Botanical Name                                  | Family         | Local Name    | Habit      | Status     |
|-----|-------------------------------------------------|----------------|---------------|------------|------------|
| No. |                                                 |                |               |            |            |
| 1   | <i>Aganope thyrsiflora</i> (Benth.)<br>Polhill. | Fabaceae       | Hulhu         | Shrub      | Unknown    |
| 2   | Aglaia perviridis Hiern.                        | Meliaceae      | Luakthei      | Tree       | Rare       |
| 3   | Boehmeria rugulosa Wedd.                        | Urticaceae     | Lumler        | Tree       | Rare       |
| 4   | Bursera serrata Wall. ex Colebr.                | Burseraceae    | Bilthei       | Tree       | Frequent   |
| 5   | Calamus gracilis Roxb.                          | Arecaceae      | Kawrtai rah   | Climber    | Rare       |
| 6   | Calamus tennuis Roxb.                           | Arecaceae      | Hruipui       | Climber    | Not common |
| 7   | Caryota mitis Lour.                             | Arecaceae      | Meihle        | Palm Tree  | Frequent   |
| 8   | Elaecoarpus tectorius (Lour.) Poir.             | Elaeocarpaceae | Kumkhal       | Tree       | Common     |
| 9   | Embelia ribes Burm.f.                           | Myrsinaceae    | Naufadawntuai | Climber    | Rare       |
| 10  | Ficus racemosa L.                               | Moraceae       | Hmawng        | Tree       | Frequent   |
| 11  | <i>Ficus semicordata</i> BuchHam. ex Sm.        | Moraceae       | Theipui       | Small tree | Common     |
| 12  | Garcinia lanceifolia Roxb.                      | Clusiaceae     | Chengkek      | Tree       | Frequent   |
| 13  | Juglans regia L.                                | Juglandaceae   | Khawkherh     | Tree       | Rare       |

| Sl.<br>No. | Botanical Name                                         | Family         | Local Name  | Habit   | Status        |
|------------|--------------------------------------------------------|----------------|-------------|---------|---------------|
| 14         | Laurocerasus jenkinsii<br>(Hook. f. & Thomson) Browicz | Rosaceae       | Keipui      | Tree    | Not<br>Common |
| 15         | Mangifera sylvatica Roxb.                              | Anacardiaceae  | Ram theihai | Tree    | Frequent      |
| 16         | <i>Meliosma punnata</i> (Roxb.)<br>Maxim.              | Sabiaceae      | Buangthei   | Tree    | Frequent      |
| 17         | <i>Myrica esculenta</i> BuchHam ex D.Don               | Myricaceae     | Keifang     | Tree    | Common        |
| 18         | Passiflora edulis Sims                                 | Passifloraceae | Sapthei     | Climber | Cultivated    |
| 19         | <i>Pyrus pashia</i> BuchHam. ex D.Don                  | Rosaceae       | Chalthei    | Tree    | Rare          |
| 20         | Rhus chinensis Mill.                                   | Anacardiaceae  | Khawmhma    | Tree    | Rare          |
| 21         | Syzygium cuminii (L.) Skeels                           | Myrtaceae      | Lenhmui     | Tree    | Not<br>Common |
| 22         | Tetrastigma obovatum<br>(M.A. Lawson) Gangnep.         | Vitaceae       | Puarpeng    | Shrub   | Not<br>Common |
| 23         | Toddalia asiaica (L.) Lam.                             | Rutaceae       | Nghardai    | Shrub   | Common        |
| 24         | Ziziphus incurva Roxb.                                 | Rhamnaceae     | Hel         | Tree    | Frequent      |

**Table 6.** Edible plants procured by the villagers from the LWLS.

| Sl.<br>no. | Botanical Name                                         | Family        | Local<br>Name | Parts used                                         |
|------------|--------------------------------------------------------|---------------|---------------|----------------------------------------------------|
| 1          | Acacia pennata (l.) Willd.                             | Fabaceae      | Khanghu       | Young leaves with a strong smell used as vegetable |
| 2          | Acmella oleraceae (L.) R.K.<br>Jansen                  | Asteraceae    | An sapui      | Leaves cooked as vegetable                         |
| 3          | <i>Acmella paniculata</i> (Wall ex DC.)<br>R.K. Jansen | Asteraceae    | An salai      | Leaves cooked as vegetable                         |
| 4          | Alocasia fornicate (Roxb.) Schott                      | Araceae       | Baibing       | Spadix cooked as vegetable                         |
| 5          | Amomum dealbatum Roxb.                                 | Zingiberaceae | ai du         | Young buds eaten as vegetable                      |
| 6          | Amorphophallus paeonifolius (Dennst.) Nicolson         | Araceae       | Tel hawng     | Boiled corm eaten as curry                         |
| 7          | <i>Aralia foliosa</i> Seem. ex C.B.<br>Clarke          | Araliaceae    | Chimchawk     | Young shoots and leaves cooked as vegetable        |
| 8          | Arenga pinnata (Wurmb) Merr.                           | Arecaceae     | Thangtung     | Young shoots eaten as vegetable                    |
| 9          | Calamus erectus Roxb.                                  | Arecaceae     | Thilthek      | Young shoots eaten as vegetable                    |
| 10         | Calamus flagellum Griff.                               | Arecaceae     | Hruipui       | Young shoots eaten as vegetable                    |
| 11         | Calamus gracilis Roxb.                                 | Arecaceae     | Kawrtai       | Young shoots eaten as vegetable                    |
| 12         | Calamus sp                                             | Arecaceae     | Thilte        | Young shoots eaten as vegetable                    |
| 13         | Calamus tennuis Roxb.                                  | Arecaceae     | Hruipuizik    | Stem pith cooked as vegetable                      |
| 14         | Caryota mitis Lour.                                    | Arecaceae     | Meihle        | Upper shoot part used as vegetable                 |
| 15         | <i>Caryota urens</i> L.                                | Arecaceae     | Tum           | Terminal buds cooked as vegetable                  |
| 16         | Centella asiatica (L.) Urban                           | Apiaceae      | Lambak        | Stalks and leaves cooked as vegetable              |
| 17         | <i>Cephalostachyum capitatum</i><br>Munro              | Poaceae       | Nat tuai      | Young shoots eaten as vegetable                    |
| 18         | Clerodendrum glandulosum Lindl.                        | Verbenaceae   | Phuihnam      | Young leaves and shoots cooked as vegetable        |
| 19         | Dendrocalamus longispathus                             | Poaceae       | Raw nal       | Young leaves and shoots cooked as vegetable        |

# $426 \quad \text{NTFPs in Lengteng Wildlife Sanctuary} \\$

| Sl.<br>no. | Botanical Name                                           | Family         | Local<br>Name   | Parts used                                                              |
|------------|----------------------------------------------------------|----------------|-----------------|-------------------------------------------------------------------------|
| 20         | Dysoxylum excelsum Blume                                 | Meliaceae      | Thingthupui     | Young shoots and leaves with<br>stinky smell are cooked as<br>vegetable |
| 21         | Eryngium foetidum L.                                     | Apiaceae       | Bahkhawr        | Leaves used for salad                                                   |
| 22         | Eurya japonica Thunb.                                    | Theaceae       | Sihneh          | Leaves are cooked as vegetable                                          |
| 23         | <i>Fagopyrum acutatum</i> (Lehm.)<br>Mansf. ex K. Hammer | Polygonaceae   | An bawng        | Stalks and leaves cooked as vegetable                                   |
| 24         | <i>Gynura bicolor</i> (Roxb. ex Willd.) DC.              | Asteraceae     | Tlangnal        | Stalks and leaves cooked as vegetable                                   |
| 25         | Marsdenia formosana Masam.                               | Apocynaceae    | Ankhate         | Leaves cooked as vegetable                                              |
| 26         | Melocanna baccifera (Roxb.) Kurz                         | Poaceae        | Mau             | Tender shoots cooked as vegetable                                       |
| 27         | Oroxylum indicum (L.) Kurz.                              | Bignoniaceae   | Archangka<br>wm | Young leaves and pods cooked as vegetable                               |
| 28         | Parkia timoriana (DC.) Merr.                             | Fabaceae       | Zawngtah        | Pods eaten as vegetable                                                 |
| 29         | Plantago major L.                                        | Plantaginaceae | Kelba an        | Leaves eaten raw or cooked as pot herb                                  |
| 30         | Pteris vitata L.                                         | Pteridaceae    | Chakawk         | Young shoots and leaves cooked as vegetable                             |
| 31         | Solanum nigrum L.                                        | Solanaceae     | Anhling         | Young stalk and leaves cooked as vegetable                              |
| 32         | Solanum rudepannum Dunal                                 | Solanaceae     | Tawke           | Fruits cooked as vegetable                                              |
| 33         | Solanum torvum Sw.                                       | Solanaceae     | Tawkpui         | Green fruits cooked as vegetable                                        |
| 34         | <i>Tresesia palmate</i> (Roxb. ex Lindl.) Vis.           | Araliaceae     | Kawhtebel       | Fruits cooked as vegetable                                              |
| 35         | <i>Wendlandia budleioides</i> Wall. ex.<br>Wight & Arn   | Rubiaceae      | Batling         | Flowers cooked as vegetable                                             |
| 36         | Zalacas ecunda Griff.                                    | Arecaceae      | Hruitung        | Young shoots eaten as vegetable                                         |

# Table 7. Some common wild medicinal plants harvested by villages from the LWLS

| SI. | Botanical Name                                       | Family          | Local                 | Part used               | Uses                                                                                                                                                                        |
|-----|------------------------------------------------------|-----------------|-----------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No. |                                                      |                 | Name                  |                         |                                                                                                                                                                             |
| 1   | <i>Centella asiatica</i><br>(L.) Urban               | Apiaceae        | Lambak                | Whole<br>plant          | Whole plant is boiled and eaten against malaria, eye problems and kidney troubles                                                                                           |
| 2   | Blumea lanceolaria<br>(Roxb.) Druce                  | Asteraceae      | Buar ze               | Leaves                  | Leaves used for Kidney problems,<br>asthma, tooth ache; leaf-juice applied on<br>skin diseases and dandruff                                                                 |
| 3   | Artemisia vulgaris<br>L.                             | Asteraceae      | Sai                   | Leaves,<br>fruits       | Decoction of leaves/fruits taken against malaria fever                                                                                                                      |
| 4   | Chromolaena orata<br>(L.) R.M.King &<br>H.Rob.       | Asteraceae      | Tlangsam              | Whole<br>plant          | <ol> <li>Leaf-juice applied on fresh cuts</li> <li>Juice of whole plants taken against<br/>ulcer, antiseptic, kidney problem</li> </ol>                                     |
| 5   | Lobelia angulata<br>G.Frost.                         | Campanulaceae   | Choakathi             | leaves<br>and<br>fruits | <ol> <li>Crushed leaves extract is taken for<br/>stomach ulcer diarrhea and Tooth ache</li> <li>pounded leaves and fruits are applied<br/>on placental problems</li> </ol>  |
| 6   | Ipomoea batatas<br>(L.) Lam.                         | Convolvulaceae  | Kawlbahra             | Leaves                  | Leaves are eaten against diarrhea,<br>dysentery, digestion problems and food<br>poisoning                                                                                   |
| 7   | Gomphogyne<br>cissiformis Griff.                     | Cucurbitaceae   | Lalruanga<br>dawibur  | Fruits                  | Empty fruit is filled with water and taken against stomach ache, fever                                                                                                      |
| 8   | Erythrina stricta<br>Roxb.                           | Fabaceae        | Fartuah               | Spines                  | <ol> <li>Crushed leaves extract is taken for<br/>stomach ulcer, diarrhea and tooth ache</li> <li>pounded leaves and fruits are applied<br/>on placental problems</li> </ol> |
| 9   | <i>Osbeckia stellata</i><br>BuchHam. ex Ker<br>Gawl. | Melastomataceae | Builukham<br>/ Khampa | Root<br>bark            | Cold infusion of root bark is used for<br>stomach problems and kidney failure;<br>prevents miscarriage                                                                      |
| 10  | <i>Hedyotis scandens</i><br>Roxb.                    | Rubiaceae       | Kelhnamtur            | Whole<br>plant          | Stalk and leaves are boiled and taken<br>against urinary problems and kidney<br>inflammation                                                                                |

427 NTFPs in Lengteng Wildlife Sanctuary

Sustainable management for NTFPs requires consideration of three types of issues – ecological, economic and social. The potential ecological impact of over-harvesting under current management strategies could be devastating for entire NTFP populations. Shifting cultivation is the single largest factor affecting bio-environmental degradation in Northeast India (Lalramnghinglova 2016). The biological material, harvested for NTFPs, is a critical part in the functioning of healthy forest ecosystems. The loss of access to gathering areas, or a significant decline in plant populations could have tremendous economic impact to the collectors and associated businesses. Knowledge from research about the economic impact of NTFP activities is needed to influence policies to support the sustainable management of the region's forests.

### Acknowledgements

The authors express their thanks to The Local field guide and forest personnel for their kind help and support during the course of field work.

## LITERATURE CITED

- Chamberlain, J.; R. Bush, &. Hammett, A.L. 1998. Non-Timber Forest Products: The Other Forest Products. *For. Prod. J.* 48(10): 2 12.
- de Beer J.H. & McDermott, M.J. 1996. *The economic value of non-timber forest products in Southeast* Asia, 2<sup>nd</sup> Revised edn. IUCN, Amsterdam.
- Fischer, C.E.C. 1938. The Flora of the Lushai Hills. Firma KLM, Pvt. Ltd. Calcutta.
- Gage, A.T. 1899. A botanical tour in the south Lushai Hills. Periodic Expert Book Agency, Delhi.
- Lalramnghinglova, H. 2003. *Ethno-Medicinal Plants of Mizoram*. Bishen Singh Mahendra Pal Singh, Dehra Dun.
- Lalramnghinglova, H. 2016. Documentation of Medicinal Plants based on Traditional Practices in the Burma Hotspots Region of Mizoram, North east India. *Emer Life Sci. Res.* 2(1): 10-45.
- Lalremruata, J.; Sahoo, U.K. & Lalramnghinglova, H. 2007. Inventory of Non-Timber Forest Products of Mizoram in North-East India. J. Non-Timb. For. Prod. 14(3): 173 – 180.
- Mukherjee, N. 2003. *Participatory Rural Appraisal: Methodology and Applications*. Concept publishing company, New Delhi. <del>160p.</del>
- Nepstad, D.C. & Schwartzman, S. (eds.). 1992. Non-timber products from tropical forests: evaluation of a conservation and development strategy. In: *Advances in economic botany*, vol. 9. The New York Botanical Garden, New York
- Parry, N.E. 1932. The Lakhers (Appendix VII). Firma KLM Pvt. Ltd. Calcutta.
- Rawat, M.S. & Chaudhury, S. 2005. *Ethno-medico botany of Arunachal Pradesh (Nyshi & Aptani Tribes)*. Bishen Singh and Mahendra Pal Singh.
- Rocky, P.; Sahoo, U.K & Thapa, H.S. 2004. Livelihood generation through Tree bean (*Parkia roxbughii* G. Don) in Imphal West District of Manipur. J. Non-Timb. For. Prod. 11(12): 123 139.
- Ros-Tonen, M.A.F. & Wiersum, K.F. 2003. The importance of non-timber forest products for forest- based rural livelihoods: an evolving research agenda. Proceedings (CD)

of the International Conference on Rural Livelihoods, *Forests and Biodiversity*. 19–23 May 2003, Bonn, Germany. Centre for International Forestry Research (CIFOR), Bogo.

Ruiz Perez, M. & Byron, N. 1999. A methodology to analyze divergent case studies of nontimber forest products and their development potential. *For. Sci.* 45: 1–14.

Sawmliana, M. 2003. Plants of Mizoram. Lois Bet, Chandmari, Aizawl.

Sheil, D. & Wunder, S. 2002. The value of tropical forest to local communities: complications,

caveats and cautions. Conserv. Ecol. 6(2): 9