Wood anatomy of some members of Euphorbiaceae and Phyllanthaceae from Assam, India

M. K. Singh¹; M. Sharma² and C. L. Sharma², ³

¹Department of Botany, PDUAM College, Darrang, Assam, India
²Wood Science and Forest Products Laboratory, Department of Forestry, North Eastern Regional Institute of Science & Technology, Nirjuli- 791109, Arunachal Pradesh, India
³Corresponding author; e-mail: cls_chaman@yahoo.co.in

[Received 22.01.2019; Revised 17.06.2019; Accepted 19.06.2019; Published 30.06.2019]

Abstract

The wood anatomy of families Euphorbiaceae and Phyllanthaceae was carried out to study the detailed account of both qualitative and quantitative anatomical characteristics in Macaranga denticulata (Blume) Müll. Arg., Balakata baccata (Roxb.) Esser (Syn: Sapium baccatum Roxb.) Baccaurea ramiflora Lour., Bischofia javanica Blume and Phyllanthus emblica L. collected from forests of upper Assam. The common anatomical features among genera were diffuse porous wood, solitary and radial multiple of vessels, vasicentric, diffuse, diffuse in aggregate parenchyma, homocellular and heterocellular rays, alternate intervessel pits and septate fibres. Among genera, growth rings were distinct in B. ramiflora. Disjunctive ray parenchyma cells were present in B. javanica and P. emblica. Vestured pits were present in M. denticulata and P. emblica. Radial canals were observed in rays of P. emblica. Forked fibres, intrusive cavity in parenchyma and fibres, prismatic crystals in chambered axial parenchyma were observed in B. baccata. Fibres showed maximum percentage followed by ray, vessel and parenchyma in all genera. Most of the anatomical characteristics showed significant variation within species.

Key words: Axial parenchyma; Diffuse porous; Intervessel pitting; Multiseriate rays; Septate fibre

INTRODUCTION

Euphorbiaceae and Phyllanthaceae are the important families of order Malpighiales. Earlier, the family Phyllanthaceae was considered a tribe of large and heterogenous family Euphorbiaceae. It is segregated from Euphorbiaceae and recognized as a separate family based on the molecular studies using DNA sequence, data of nuclear PHYC, plastid, atpB, mat K and rbcL alongwith morphological characters (Holfinan et al 2006). Both the families are of considerable importance and have number of economically important plants like rich source of oil (seeds of Ricinus communis, Croton tiglium, Jatropha curcas, Vernicia fordii), vitamin C, protein and iron ((fruits of Baccaurea ramiflora), tannins (bark, leaves and fruits of Phyllanthus emblica) and rearing silk worms (leaves of Balakata baccata). The major commercial product is para-rubber which is a latex obtained from the bark of Hevea brasiliensis. In addition, there are a number of timber yielding species. The wood of Baccaurea ramiflora is used for making walking sticks, furniture and cabinet works. Bischofia javanica, an important avenue tree species is also used for making plywood, packing cases and beams etc. It is also commonly used by tigers to scratch mark territory in the forests of Assam. Its bark is rich source of red dye (Rajbongshi et al. 2014). Orwa et al. (2009) reported the use of wood of Phyllanthus emblica for clarification of muddy water of streams. It is also used for making agricultural implements, gunstock, furniture etc. Likewise,
the wood of *Macaranga denticulata* and *Balakata baccata* are used for plywood industries, light packing cases, small turnery articles and general carpentry.

A perusal of literature reveals that Nazma *et al.* (1981) placed *Drypetes roxburghii* in Aprusa type of sub-family Phyllanthoideae due to presence of scalariform perforation plates in ray cells. The detailed wood anatomical studies on seven species of *Amanoa* and 51 genera of 19 tribes of Acalyphoideae were investigated by Hayden *et al.* (1993); Hayden and Hayden (2000). They characterized the wood by simple and scalariform perforation plates, inter vessel pits, types of axial parenchyma and presence of crystals in parenchyma or ray cells. Mennega (2005) observed similarity in vessel arrangements, inter vessel pits, gelatinous fibres and parenchyma type in 82 species of sub-family Euphorboideae and distinguished genera due to presence of either silica or crystals. Wiedenhoeft (2008) compared the anatomy of several taxa of Crotonoideae and made the comparison between members of *Celianella* and *Antidesma*. The presence of ray intrusive latifers in *Croton* species of section Cyclostigma were reported by Wiedenhoeft *et al.* (2009). Oladipo and Iloh (2012) highlighted significant variation in anatomical characters of *Jatropha* species.

In India, Gamble (1922) listed out only general microscopic features of family Euphorbiaceae. Pearson and Brown (1932) investigated 6 species of the family Euphorbiaceae based on cross section. Raturi *et al.* (2001) mentioned gross features, few microscopic features and general properties of 26 genera of this family. The anatomy of wood specimens of sub families of family Euphorbiaceae available in FRI, Xylarium, Dehradun was performed to reflect their systematic, ecology and evolutionary aspects (Jangid & Gupta 2015, 2016; Jangid *et al.* 2017). However, there is limited report on wood anatomy of different genera available in Assam. Therefore, the aim of the present study is to provide detailed account of both qualitative and quantitative anatomical characteristics of Euphorbiaceae and Phyllanthaceae.

MATERIALS AND METHODS

Study site

The wood samples of selected species namely *Baccaurea ramiflora* Lour., *Bischofia javanica* Blume, *Macaranga denticulata* (Blume) Müll. Arg., *Phyllanthus emblica* L. and *Balakata baccata* (Roxb.) Esser [= *Sapium baccatum* Roxb.] were collected from different forest regions of Assam, India (Table 1). For each species, five mature trees with uniform crown and straight boles were selected. Wood sample of 5 cm³ size was taken from each tree with the help of a chisel and a hammer at breast- height.

Processing of wood samples

Collected wood samples were trimmed to 2 cm³ size and were fixed in FAA for 24 – 48 hours. The samples were preserved in 50 % alcohol for further studies.

Preparation of permanent slides

Wood sections of about 15 – 25 microns thickness were cut in three planes (cross, tangential longitudinal and radial longitudinal) with the help of a sliding microtome. Permanent slides were prepared by following standard laboratory protocol.

Study of anatomical characteristics

The anatomical features of selected woods in three planes were studied under light microscope at different magnification. Also, parameters like fibre diameter, fibre wall thickness, vessel
diameter, vessel frequency and tissue proportion were determined from cross sections. Ray height, ray width and parenchyma strand from tangential longitudinal sections and intervessel pits from radial longitudinal sections were measured. The IAWA list of anatomical features (Wheeler et al. 1989) was followed for terminology, measurements and anatomical features.

Preparation of temporary slides

Small match sized splinters from radial sides were taken and macerated with Franklin’s solution in an oven at 60°C for 24 hours. Temporary slides were prepared in 50 % glycerol for measurements of fibre length, vessel length, vessel shapes and fibre tips.

Statistical analysis

The data were analysed using SPSS 16.0 software.

RESULTS

The photomicrographs and quantitative features of selected species are presented in Figures 1-3 and Table 1.

EUPHORBIACEAE

Macaranga denticulata [Figures 2A - D; 3G]

Growth rings: indistinct.

Vessels: diffuse-porous, vessels mostly solitary, in radial multiples of 2-6, oval in outline, 125.1-1075.86µm (Mean 482.18±196.81µm) in length, 93.78-276.13µm (Mean165.13±36.22µm) in diameter, vessel frequency 2-10 (Mean 4.56±1.97) per mm², simple perforation plate, intervessel pits alternate, vestured, medium to large, 5.20-18.20 µm (Mean 8.27±1.78µm) in size, vessel - ray pits with much reduced borders to apparently simple: pits rounded or angular, tyloses present.

Fibres: thin walled, 450.36-1551.24µm (Mean 1089.47±236.66µm) long, 13-46.8µm (Mean 26.68±6.21µm) and 7.8-31.2 µm (Mean 16.61±4.69µm) in diameter and lumen diameter, 1.3-16.9µm (Mean 5.10±2.89µm) in wall thickness, septate fibres present.
Figure 1: *Baccurea ramiflora*: A Cross-section showing diffuse-porous wood, vessel solitary and in radial multiple of 2-4, parenchyma vasicentric and diffuse in aggregates. B Tangential longitudinal section showing multiseriate rays and parenchyma strand C-D Radial longitudinal sections showing heterocellular rays (C) and perforated ray cell with simple perforation (D). *Bischofia javanica*: E Cross- sections showing diffuse-porous wood, vessels in radial multiple of 2, parenchyma vasicentric. F Tangential longitudinal section showing uniseriate, multiseriate rays and parenchyma strand. G Radial longitudinal sections showing heterocellular rays and H vestured intervessel pits

Figure 2: *Macaranga denticulata*: A Cross- section showing diffuse-porous wood, vessel solitary and in radial multiples of 2-3, vasicentric, diffuse and diffuse in aggregate parenchyma. B Tangential longitudinal section showing uniseriate rays, intervessel pits and parenchyma strand C-D Radial longitudinal sections showing homocellular rays (C) and perforated ray cell with simple perforation (D). *Phyllanthus emblica*: E Cross- section showing diffuse-porous wood, vessel solitary, in radial multiples of 2-3, vasicentric and scanty paratracheal parenchyma. F Tangential longitudinal section showing multiseriate rays, parenchyma strand and radial canal in ray. G Radial longitudinal sections showing heterocellular rays; perforated ray cell with simple perforation. H disjunctive ray parenchyma cells.
Parenchyma: vasicentric, diffuse and diffuse in aggregate, 2-8 cells per strand, prismatic crystals present in axial parenchyma.

Rays: mostly uniseriate, rarely biseriate, ray height and ray width 31.26-875.28µm (Mean 404.46±167.39µm) and ray width 10.42-41.68µm (Mean 10.75±2.94µm), rays homocellular and heterocellular, all ray cells upright in homocellular ray and body ray cells procumbent with two rows of upright and/or square marginal cells in heterocellular ray. Rays 7-21 (Mean 13.48±2.64) per mm, perforated ray cells with simple perforation present, Prismatic crystals present.

Balakata baccata [Figures 3A - D, I]

Growth ring: indistinct.

Vessels: diffuse-porous, mostly solitary, in radial multiples of 2, oval in outline, 175.14-950.76µm (Mean 540.03±188.20µm) in length, 93.78-291.76µm (Mean178.18±40.93µm) in diameter, vessel frequency 3-14 (Mean 8.46±2.77) per mm², simple perforation plate, intervessel pits alternate, medium, 5.20-23.40µm (Mean 9.06±2.63µm) in size, vessel-ray pits with much reduced borders to apparently simple, tyloses present.

Fibres: thin to thick walled, 375.30-1851.48µm (Mean 1142.51±280.73µm) long, 15.6-52 µm (Mean 29.12±6.76µm) and 7.8-28.6µm (Mean 17.86±4.96µm) in diameter, lumen diameter, 1.3-15.6µm (Mean 5.62±3.44µm) in wall thickness, intrusive cavity, septate and bifurcated fibres present.

Parenchyma: diffuse, diffuse-in-aggregates, 2-10 cells per parenchyma strand, intrusive cavity present, prismatic crystals in chambered axial parenchyma.

Rays: mostly uniseriate, rarely biseriate, ray height 72.94-1250.40µm (Mean 398.04±199.23µm) and ray width 10.4-52.1µm (Mean 12.08±5.19µm), rays both homocellular and heterocellular. In homocellular rays, all ray cells procumbent and body ray cells procumbent with two rows of upright and/or square marginal cells in heterocellular rays, rays 3-7 (Mean 4.98±1.02) per mm, radial canals and pith flecks present.

PHYLLANTHACEAE:

Baccaurea ramiflora [Figures 1A-D; 3E]

Growth rings: both indistinct and distinct and marked by radially flattened thick walled fibres if distinct.

Vessels: diffuse-porous, mostly solitary, in radial multiples of 2-4, oval in outline, 325.26-1626.3µm (Mean 800.43±249.05µm) in length, 52.10-166.72µm (Mean 94.61±24.00µm) in diameter, vessel frequency 16-30 (Mean 22.5±3.21) per mm², scalariform perforation plate with e¹0 bars, intervessel pits alternate, medium to large, 5.2-26 µm (Mean 8.71±3.82 µm) in size, vessel-ray pits with much reduced borders to apparently simple: pits rounded or angular.

Fibres: thick walled, 300.24-3002.40µm (Mean 1384.90±498.73µm) long, 10.4-52 µm (Mean 28.18±6.89µm) and 7.8-36.4µm (Mean 24.93±8.14µm) in diameter and lumen diameter, 13-37.7µm (Mean 23.14±4.58µm) in wall thickness, septate fibres present.

Parenchyma: vasicentric and also diffuse-in-aggregate. 2-12 cells per strand.

Rays: uniseriate, biseriate, multiseriate, ray height 62.52-1302.50µm (Mean 534.75±380.05µm) and ray width 31.26-135.46µm (Mean 81.77±21.82µm), rays homocellular and heterocellular.
In homocellular rays, all ray cells either procumbent or square or upright. In heterocellular rays, body ray cells procumbent with two rows of upright and/or square marginal cells. Rays 3-13 (Mean 7.58±2.15) per mm, perforated ray cells with scalariform perforation present. Prismatic crystals present in procumbent ray cells.

Bischofia javanica [Figures 1E-H; 3F]

Growth rings: Indistinct.

Vessels: diffuse-porous, mostly solitary, in radial multiples of 2-3, oval in outline, 250.2-950.76 µm (Mean 532.62±161.42 µm) in diameter, vessel frequency 4-20 (Mean 11.06±3.62) per mm², both simple and scalariform perforation plate, intervessel pits alternate, vestured, medium to large, 5.20-23.40 µm (Mean 11.56±3.59 µm) in size, vessel ray pits with much reduced border to apparently simple, pits rounded, tyloses present.

Fibres: thick walled, 500.4-2251.8 µm (Mean 1252.80±370.37 µm) long, 20.8-72.8 µm (Mean 45.53±9.18 µm) and 7.8-52 µm (Mean 24.93±8.14 µm) in diameter, vessel frequency 4-20 (Mean 11.06±3.62) per mm², both simple and scalariform perforation plate, intervessel pits alternate, vestured, medium to large, 1.3-27.3 µm (Mean 10.29±4.76 µm) in wall thickness, septate fibres present, Laticifers (black streaks) present among fibres.

Parenchyma: vasicentric, diffuse. 2-6 cells per strand.

Rays: uniseriate, biseriate, multiseriate, ray height 166.72 - 1114.94 µm (Mean 527.33±207.92 µm) and ray width 10.42-135.46 µm (Mean 76.60±29.06 µm), rays heterocellular, body ray cells procumbent with two rows of upright and/or square marginal cells. Rays 3-11 (Mean 6.32±2.06) per mm, disjunctive ray parenchyma walls present.

Phyllanthus emblica [Figures 2E-H; 3H]

Growth rings: indistinct.

Vessels: diffuse-porous, vessels mostly solitary, in radial multiples of 2-5, oval in outline, 125.1-1251 µm (Mean 531.62±232.90 µm) in length, 88.57-224.03 µm (Mean 149.25±27.39 µm) in diameter, vessel frequency 11-32 (Mean 18.18±4.22) per mm², simple perforation plate, intervessel pits alternate, vestured, medium to large, 5.20-18.20 µm (Mean 8.17±1.82 µm) in size, vessel ray pits with much reduced border to apparently simple, pits horizontal, scalariform.

Fibres: thin to thick walled, 200.16-2001.6 µm (Mean 1377.70±1331.06 µm) long, 18.2 – 52 µm (Mean 30.95±6.89 µm) and 7.8-31.2 µm (Mean 17.38±4.85 µm) in diameter, vessel frequency 11-32 (Mean 18.18±4.22) per mm², simple perforation plate, intervessel pits alternate, vestured, medium to large, 1.3-15.6 µm (Mean 6.78±3.08 µm) in wall thickness, septate fibres present, prismatic crystals present.

Parenchyma: vasicentric and scanty paratracheal. 2-9 cells per strand.

Rays: multiseriate, ray height 364.70-5543.44 µm (Mean 1222.30±806.99 µm) and ray width 41.68-229.24 µm (Mean 114.28±40.15 µm), rays heterocellular, body ray cells procumbent with two rows of upright and/or square marginal cells. Rays 3-8 (Mean 5.36±1.24) per mm, disjunctive ray parenchyma cells, perforated ray cells with simple perforation present, latex canal present in ray, prismatic crystals present in procumbent cells of ray.

Tissue percentage varied among species. _B. javanica_ had maximum fibre percentage followed by _P. emblica, B. baccata, B. ramiflora and M. denticulata_. There was maximum vessel and ray percentage _B. ramiflora, M. denticulata_ had also maximum percentage of ray and parenchyma. On the other hand minimum vessel and ray percentage in _B. javanica_.
Figure 3: *Sapium baccatum*: A Cross-sections showing diffuse-porous wood, vessel solitary and in radial multiple of 2, diffuse and diffuse in aggregates parenchyma and pith flecks. B-C Tangential longitudinal sections showing uniseriate rays, parenchyma strand, radial canal (B) intrusive cavity in fibre (C). D Radial longitudinal section showing heterocellular rays. E-I Macerated wood elements showing scalariform perforation in *B. ramiflora* (E), septate fibre in *B. javanica* (F), vessel barrel shaped with short tails and simple perforations in *M. denticulata* and *P. emblica* (G-H), parenchyma strand (H) and forked fibre in *S. baccatum* (I).

Figure 4: Tissue proportion of selected species of family Euphorbiaceae and Phyllanthaceae and parenchyma percentage in *B. javanica* and *B. baccata* were observed (Figure 4). The result presented in Table 3 showed that fibre length and fibre diameter existed statistically significant variation in all species except *B. javanica* and. There was a statistically significant variation in fibre lumen diameter in *M. denticulata* and *B. baccata*. The vessel parameters namely vessel length, vessel diameter and intervessel pits exhibited statistically significant differences in all species except vessel length in *B. javanica*, inter vessel pits in *P. emblica*.
and *M. denticulata*. Vessel frequency and axial parenchyma strand were non-significant for all species except *B. ramiflora*. Ray height and ray width were significant for all species except *M. denticulata*. Fibre wall thickness was non-significant for all species except *B. ramiflora*. Ray frequency was significant in *M. denticulata* and *B. baccata*.

Table 2. Quantitative features of selected species of Euphorbiaceae and Phyllanthaceae

<table>
<thead>
<tr>
<th>Parameters</th>
<th>B. ramiflora</th>
<th>B. javanica</th>
<th>M. denticulata</th>
<th>P. emblica</th>
<th>B. baccata</th>
</tr>
</thead>
<tbody>
<tr>
<td>FL (µm) (Mean±SD)</td>
<td>300.24-3002.40 (1384.90±498.73)</td>
<td>500.40-2251.80 (1252.80±370.37)</td>
<td>450.36-1551.24 (1089.47±236.66)</td>
<td>200.16-2001.60 (1377.70±1331.06)</td>
<td>375.3-1851.48 (1142.51±280.73)</td>
</tr>
<tr>
<td>FD (µm) (Mean±SD)</td>
<td>10.40-52 (28.18±6.89)</td>
<td>20.80-72.80 (45.53±9.18)</td>
<td>13-46.80 (26.68±6.21)</td>
<td>18.20-52 (30.95±6.19)</td>
<td>15.60-52 (29.12±6.76)</td>
</tr>
<tr>
<td>FWT (µm) (Mean±SD)</td>
<td>13-37.70 (23.14±4.58)</td>
<td>13-27.30 (10.29±4.76)</td>
<td>13-16.90 (5.10±2.89)</td>
<td>13-15.60 (6.78±3.08)</td>
<td>13-15.60 (5.62±3.44)</td>
</tr>
<tr>
<td>VL (µm) (Mean±SD)</td>
<td>325.26-1626.3 (800.43±249.05)</td>
<td>250.20-950.76 (532.62±161.42)</td>
<td>125.10-1075.86 (482.18±196.81)</td>
<td>125.10-1251.24 (531.62±232.90)</td>
<td>175.14-950.76 (540.03±188.20)</td>
</tr>
<tr>
<td>VD (µm) (Mean±SD)</td>
<td>52.1-166.72 (94.61±24.00)</td>
<td>98.88-234.45 (162.71±28.15)</td>
<td>9.38-276.13 (149.25±27.39)</td>
<td>93.78-291.76 (178.18±40.93)</td>
<td>93.78-291.76 (178.18±40.93)</td>
</tr>
<tr>
<td>IVP (µm) (Mean±SD)</td>
<td>5.20-26 (8.71±3.82)</td>
<td>5.20-23.40 (11.56±3.59)</td>
<td>5.20-18.20 (8.27±1.78)</td>
<td>5.20-18.20 (8.17±1.82)</td>
<td>5.20-23.40 (9.06±2.63)</td>
</tr>
<tr>
<td>V/µm² (Mean±SD)</td>
<td>16-30 (22.5±3.21)</td>
<td>4-20 (11.06±3.62)</td>
<td>2-10 (4.56±1.97)</td>
<td>11-32 (18.18±4.22)</td>
<td>3-14 (8.46±2.77)</td>
</tr>
<tr>
<td>APS (Mean±SD)</td>
<td>2-12 (3.52±1.61)</td>
<td>2-6 (2.94±1.15)</td>
<td>2-8 (3.86±1.42)</td>
<td>2-9 (3.70±1.65)</td>
<td>2-10 (4.66±2.07)</td>
</tr>
<tr>
<td>RH (µm) (Mean±SD)</td>
<td>62.52-1302.50 (534.75±380.05)</td>
<td>166.72-1114.94 (527.33±207.93)</td>
<td>31.26-875.28 (404.46±167.39)</td>
<td>364.70-5543.44 (1222.30±806.99)</td>
<td>72.94-1250.40 (398.04±199.23)</td>
</tr>
<tr>
<td>RW (µm) (Mean±SD)</td>
<td>31.26-135.46 (81.77±21.82)</td>
<td>10.42-135.46 (76.60±29.06)</td>
<td>10.42-41.68 (10.75±2.94)</td>
<td>41.68-229.24 (114.28±40.15)</td>
<td>10.4-52.10 (12.08±5.19)</td>
</tr>
<tr>
<td>RF/mm (Mean±SD)</td>
<td>3-13 (7.58±2.15)</td>
<td>3-11 (6.32±2.06)</td>
<td>7-21 (13.48±2.64)</td>
<td>3-8 (5.36±1.24)</td>
<td>3-7 (4.98±1.02)</td>
</tr>
</tbody>
</table>

DISCUSSION

The present study shows that all selected genera of families Euphorbiaceae and Phyllanthaceae were diffuse-porous with indistinct rings. Distinct rings were also observed in *Baccaurea ramiflora*. Vessels were mostly solitary, in short radial multiple of 2-3 in *B. ramiflora* and *Bischofia javanica* and in long radial multiples of 2-6 in *Macaranga denticulata* and *Phyllanthus emblica*. Barrel, oblong and linear shapes of vessels were present in all genera. In addition, drum shaped vessels were present in *Balakata baccata* and *P. emblica*. Simple perforation plates were present in *M. denticulata*, *P. emblica* and *B. baccata*, scalariform perforation plates with 10-20 bars in *B. ramiflora* and both simple and scalariform perforation plates were present in *B. javanica*. Intervessel pits were alternate, medium except *B. ramiflora*. Vestured pits were seen in *B. javanica* and *P. emblica*. Vessel ray pits were with much reduced borders to apparently simple, pits rounded, horizontal and scalariform. Porosity, vessel grouping, perforation plates, intervessel pits arrangement and vessel ray pitting in the present investigation are in confirmation with the findings of other workers (Mennega 1984, 2005; Hayden *et al.*, 1993; Hayden & Hayden, 2000; Jangid & Gupta, 2015). Nair (1998) identified small branched or unbranched vestures distributed randomly on pit chamber away from aperture in *Phyllanthus acidus* and branched or unbranched vesture aggregations near the pit aperture in *Bridelia retusa* and *Bridelia squamosa*. In the present
study vestured pits were present in *B. javanica* and *P. emblica*, but branching of vesture was not clear. It may be due to observation of pits under light microscope. Tyloses were common in *B. javanica*, *M. denticulata* and *B. baccata*.

Fibres were thin to thick-walled. However, highly thick walled fibres with narrow lumen were observed in *B. ramiflora*. Septate fibres were present in all the species. There were several septa per cell but a single septum dividing the fibre lumen into two parts was present in *B. javanica*. Such types of fibres are reported in *Clutia abyssinica* (Hayden & Hayden 2000). In *B. baccata*, fibres with forking and intrusive cavities were recorded. Such fibres are also reported in *Croton floribundus* and *Sapium glandulosum* of Euphorbiaceae by Dias-Leme and Angyalossy-Alfonso (1998) and confirm the present investigation.

In the present investigation, the axial parenchyma were diffuse and diffuse in aggregate in *B. javanica*, *M. denticulata* and *B. baccata*, narrow bands in *B. ramiflora*, with some scanty parenchyma cells in *B. baccata* and *P. emblica*. Vasicentric parenchyma was also present in *B. javanica*, *M. denticulata* and *P. emblica*. The present investigations are in agreement with the findings of Hayden and Hayden 2000; Hayden *et al.*, 1993; Mennega 2005; Jangid and Gupta, 2015. Prismatic crystals in parenchyma cells of *M. denticulata* and crystals bearing chambered parenchyma cells in *B. baccata* are in agreement with the investigation of Hayden *et al.* (1993) and Hayden and Hayden (2000). Intrusive cavities were found rarely in axial parenchyma cells of *B. baccata* and corroborate findings of Dias-Leme and Angyalossy-Alfonso (1998).

Rays were uniseriate, biseriate and multiseriate in *B. javanica* and *B. ramiflora*, multisierate only in *P. emblica* and mostly uniseriate and rarely biseriate in *M. denticulata* and *B. baccata*. Rays were both homocellular and heterocellular in all selected members. The homocellular rays of *

Table 3. Analysis of variance for quantitative characteristics within selected species (n=5)

<table>
<thead>
<tr>
<th>Species</th>
<th>FL</th>
<th>HD</th>
<th>FD</th>
<th>VD</th>
<th>VF</th>
<th>IVP</th>
<th>FL</th>
<th>FD</th>
<th>VD</th>
<th>IVP</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. ramiflora</td>
<td>5.91*</td>
<td>2.93*</td>
<td>1.80*</td>
<td>5.90**</td>
<td>4.83**</td>
<td>1.79**</td>
<td>1.80*</td>
<td>5.90**</td>
<td>4.83**</td>
<td>1.79**</td>
</tr>
<tr>
<td>B. javanica</td>
<td>1.80*</td>
<td>2.73*</td>
<td>1.80*</td>
<td>2.73*</td>
<td>1.80*</td>
<td>2.73*</td>
<td>1.80*</td>
<td>2.73*</td>
<td>1.80*</td>
<td>2.73*</td>
</tr>
<tr>
<td>M. denticulata</td>
<td>4.87**</td>
<td>4.87**</td>
<td>5.90**</td>
<td>4.87**</td>
<td>4.87**</td>
<td>5.90**</td>
<td>4.87**</td>
<td>4.87**</td>
<td>5.90**</td>
<td>4.87**</td>
</tr>
<tr>
<td>P. emblica</td>
<td>1.31**</td>
<td>2.72**</td>
<td>1.03**</td>
<td>0.40**</td>
<td>1.03**</td>
<td>2.72**</td>
<td>1.31**</td>
<td>2.72**</td>
<td>1.03**</td>
<td>0.40**</td>
</tr>
</tbody>
</table>

*The level of significance used are ns = non-significant; * = significant at P<0.05 level; ** = significant at P<0.01 level. FL - Fibre Length; FD - Fibre Diameter; FLD - Fibre Lumen Diameter; FWT - Fibre Wall Thickness; VL - Vessel Length; VD - Vessel Diameter; VP - Intervessel Pitting; APS - Axial Parenchyma Strand; RH - Ray Height; RW - Ray Width; RF - Ray Frequency.*
Conclusions

The present study revealed that wood structure was homogeneous among genera of families Euphorbiaceae and Phyllanthaceae. Growth rings were indistinct in all genera except B. ramiflora. Disjunctive ray parenchyma cells were present in both B. javanica and P. emblica. Vestured pits were present in M. denticulata and P. emblica. Anatomically, P. emblica could be differentiated from B. javanica by presence of exclusively multiseriate rays and radial canal in rays. The presence of uniseriate rays and perforated ray cells with simple perforation were the features to distinguish M. denticulata from P. emblica. The forked fibres, intrusive cavity in fibre and parenchyma, pith flecks and prismatic crystals in chambered axial parenchyma were the diagnostic features to distinguish B. baccata from other genera.

Laticifers are present in secondary xylem and in rays (Rudall 1987; Carlquist 2001). Hayden and Hayden (2000) observed lysigenous radial canals devoid of any secretion in larger rays of some genera of family Euphorbiaceae while Wiedenhoeft et al. (2009) recorded ray intrusive laticifers in Croton species. In the present investigations, some long, dark coloured streaks were recorded among fibres in tangential and radial sections of B. javanica. On the other hand, radial canals in rays of P. emblica and B. baccata were also recorded. Prismatic crystals were present in B. ramiflora, P. emblica and M. denticulata and are in agreement with the findings of Hayden and Hayden (2000) and Jangid and Gupta (2015).

Most of the anatomical characteristics were significant within the species and contrary to the findings of Pande et al. (2005, 2008).

LITERATURE CITED

